(x+4)(y^2+1)dx+y(x^2+3x+2)dy=0

Simple and best practice solution for (x+4)(y^2+1)dx+y(x^2+3x+2)dy=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+4)(y^2+1)dx+y(x^2+3x+2)dy=0 equation:


Simplifying
(x + 4)(y2 + 1) * dx + y(x2 + 3x + 2) * dy = 0

Reorder the terms:
(4 + x)(y2 + 1) * dx + y(x2 + 3x + 2) * dy = 0

Reorder the terms:
(4 + x)(1 + y2) * dx + y(x2 + 3x + 2) * dy = 0

Reorder the terms for easier multiplication:
dx(4 + x)(1 + y2) + y(x2 + 3x + 2) * dy = 0

Multiply (4 + x) * (1 + y2)
dx(4(1 + y2) + x(1 + y2)) + y(x2 + 3x + 2) * dy = 0
dx((1 * 4 + y2 * 4) + x(1 + y2)) + y(x2 + 3x + 2) * dy = 0
dx((4 + 4y2) + x(1 + y2)) + y(x2 + 3x + 2) * dy = 0
dx(4 + 4y2 + (1 * x + y2 * x)) + y(x2 + 3x + 2) * dy = 0
dx(4 + 4y2 + (1x + xy2)) + y(x2 + 3x + 2) * dy = 0

Reorder the terms:
dx(4 + 1x + xy2 + 4y2) + y(x2 + 3x + 2) * dy = 0
dx(4 + 1x + xy2 + 4y2) + y(x2 + 3x + 2) * dy = 0
(4 * dx + 1x * dx + xy2 * dx + 4y2 * dx) + y(x2 + 3x + 2) * dy = 0

Reorder the terms:
(4dx + 4dxy2 + 1dx2 + dx2y2) + y(x2 + 3x + 2) * dy = 0
(4dx + 4dxy2 + 1dx2 + dx2y2) + y(x2 + 3x + 2) * dy = 0

Reorder the terms:
4dx + 4dxy2 + 1dx2 + dx2y2 + y(2 + 3x + x2) * dy = 0

Reorder the terms for easier multiplication:
4dx + 4dxy2 + 1dx2 + dx2y2 + y * dy(2 + 3x + x2) = 0

Multiply y * dy
4dx + 4dxy2 + 1dx2 + dx2y2 + dy2(2 + 3x + x2) = 0
4dx + 4dxy2 + 1dx2 + dx2y2 + (2 * dy2 + 3x * dy2 + x2 * dy2) = 0

Reorder the terms:
4dx + 4dxy2 + 1dx2 + dx2y2 + (3dxy2 + dx2y2 + 2dy2) = 0
4dx + 4dxy2 + 1dx2 + dx2y2 + (3dxy2 + dx2y2 + 2dy2) = 0

Reorder the terms:
4dx + 4dxy2 + 3dxy2 + 1dx2 + dx2y2 + dx2y2 + 2dy2 = 0

Combine like terms: 4dxy2 + 3dxy2 = 7dxy2
4dx + 7dxy2 + 1dx2 + dx2y2 + dx2y2 + 2dy2 = 0

Combine like terms: dx2y2 + dx2y2 = 2dx2y2
4dx + 7dxy2 + 1dx2 + 2dx2y2 + 2dy2 = 0

Solving
4dx + 7dxy2 + 1dx2 + 2dx2y2 + 2dy2 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), 'd'.
d(4x + 7xy2 + x2 + 2x2y2 + 2y2) = 0

Subproblem 1

Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0

Subproblem 2

Set the factor '(4x + 7xy2 + x2 + 2x2y2 + 2y2)' equal to zero and attempt to solve: Simplifying 4x + 7xy2 + x2 + 2x2y2 + 2y2 = 0 Solving 4x + 7xy2 + x2 + 2x2y2 + 2y2 = 0 Move all terms containing d to the left, all other terms to the right. Add '-4x' to each side of the equation. 4x + 7xy2 + x2 + 2x2y2 + -4x + 2y2 = 0 + -4x Reorder the terms: 4x + -4x + 7xy2 + x2 + 2x2y2 + 2y2 = 0 + -4x Combine like terms: 4x + -4x = 0 0 + 7xy2 + x2 + 2x2y2 + 2y2 = 0 + -4x 7xy2 + x2 + 2x2y2 + 2y2 = 0 + -4x Remove the zero: 7xy2 + x2 + 2x2y2 + 2y2 = -4x Add '-7xy2' to each side of the equation. 7xy2 + x2 + 2x2y2 + -7xy2 + 2y2 = -4x + -7xy2 Reorder the terms: 7xy2 + -7xy2 + x2 + 2x2y2 + 2y2 = -4x + -7xy2 Combine like terms: 7xy2 + -7xy2 = 0 0 + x2 + 2x2y2 + 2y2 = -4x + -7xy2 x2 + 2x2y2 + 2y2 = -4x + -7xy2 Add '-1x2' to each side of the equation. x2 + 2x2y2 + -1x2 + 2y2 = -4x + -7xy2 + -1x2 Reorder the terms: x2 + -1x2 + 2x2y2 + 2y2 = -4x + -7xy2 + -1x2 Combine like terms: x2 + -1x2 = 0 0 + 2x2y2 + 2y2 = -4x + -7xy2 + -1x2 2x2y2 + 2y2 = -4x + -7xy2 + -1x2 Add '-2x2y2' to each side of the equation. 2x2y2 + -2x2y2 + 2y2 = -4x + -7xy2 + -1x2 + -2x2y2 Combine like terms: 2x2y2 + -2x2y2 = 0 0 + 2y2 = -4x + -7xy2 + -1x2 + -2x2y2 2y2 = -4x + -7xy2 + -1x2 + -2x2y2 Add '-2y2' to each side of the equation. 2y2 + -2y2 = -4x + -7xy2 + -1x2 + -2x2y2 + -2y2 Combine like terms: 2y2 + -2y2 = 0 0 = -4x + -7xy2 + -1x2 + -2x2y2 + -2y2 Simplifying 0 = -4x + -7xy2 + -1x2 + -2x2y2 + -2y2 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

d = {0}

See similar equations:

| 323=-19v | | -0.01x^2+1x-41=0 | | 18.2*12= | | X+1*x+6= | | X+5*x+6= | | Y+4*Y+10= | | x(x+1)(x+3)(x+4)=180 | | Factoringx^2-8x=0 | | 10x^2+58x+76=0 | | Y+3*y+5= | | -x^2-9=-25 | | 2x-3-4x-5=0 | | X+5*x+2= | | -x^2-9=25 | | 3.5*4.1= | | 8(4x-(5-6y+7x)+2y)=0 | | (x+2)(2x+1)=0 | | 8w-6=6(w+1) | | 2x+19+x-13+90=180 | | h=16t-t^2 | | 2x+19=x+20 | | 189=-10p-9 | | 3=2+1 | | (3z-8)(6+z)=0 | | 2x+3=x^2+4 | | 9m-4=-8 | | 91=-7a | | 3=21x+1v | | 330+2x+3y=1410 | | (-y+0)+3y=-4 | | x=-y+0 | | 2x-y=y-3 |

Equations solver categories